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Abstract
In this article, flow and heat transfer inside a corrugated cavity is analyzed for natural convection
with a heated inner obstacle. Thermal performance is analyzed for CuO–water inside a partially
heated domain by defining the constraint along the boundaries. For nanofluid analysis, the Koo
and Kleinstreuer Li (KKL) model is implemented to deal with the effective thermal conductivity
and viscosity. A heated thin rod is placed inside the corrugated cavity and the bottom portion of
the corrugated cavity is partially heated. The dimensionless form of nonlinear partial differential
equations are obtained through the compatible transformation along with the boundary
constraint. The finite element method is executed to acquire the numerical solution of the
obtained dimensional system. Streamlines, isotherms and heat transfers are analyzed for the flow
field and temperature distribution. The Nusselt number is calculated at the surface of the partially
heated domain for various numerical values of emerging parameters by considering the inner
obstacle at cold, adiabatic and heated conditions. The computational simulation was performed
by introducing various numerical values of emerging parameters. Important and significant
results have been attained for temperature and velocities (in both x- and y-directions) at the
vertically and horizontally mean positions of the corrugated duct.
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1. Introduction

The study of heat transfer analysis is a very attractive area for
researchers due to its massive applications in industry, in
particular in automobiles, food processing, chemical indus-
tries, textile, heating and cooling devices, heavy machinery,
etc. Fluid flow and heat transfer are quite complex phenom-
ena within cavities as compared to open surfaces because of
their geometrical boundary conditions. Therefore, this area is
considered both theoretically and experimentally due to the
complex geometry involved. Comprehensive data is available
in the literature. Recently, Haq et al investigated the heat

transfer analysis inside a partially heated trapezoidal cavity
[1], a rhombus with fully heated square obstacle [2] and a
corrugated cavity [3]. Shape effects of the nanoparticles of
forced convection fluid flow inside a semi annulus was stu-
died by Sheikholeslami and Bhatti [4]. Das and Morsi [5]
considered a natural convection model inside a dome-shaped
cavity. Heat transfer analysis of the natural convection flow of
nanofluid enclosed in a quarter-circular shaped cavity was
discussed by Uddin et al [6]. Oztop et al explored the natural
convection flow of nanofluid enclosed in an annulus formed
by two isothermal cylinders [7] and a rectangle which was
partially heated [8]. In another study, thermal and mass
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performance of fluid under the impact of the Lewis number
for the buoyancy ratio parameter through the FEM was ana-
lyzed by Rahman et al [9]. In that article they investigated the
triangular shaped cavity with a sinusoidal bottom wall.

The influence of wavy surface features on natural con-
vection heat transfer in a cosine corrugated square cavity with
Cu–H2O nanofluid was reported by Shirvan et al [10]. They
observed that the sensitivity of Num to wavy wavelengths is
similar to the sensitivity of wavy amplitude while the sensi-
tivity of the Nusselt number is more sensitive to the parameter
of A for a low level of effective parameters. Sheikholeslami
and Bokni [11] described the magnetohydrodynamics effects
on CuO–water due to temperature difference inside a curved
domain shell. They used the Koo and Kleinstreuer Li (KKL)
model to investigate the significant outcomes of Brownian
motion of the particles and applied the lattice Boltzmann
method to simulate the proposed model. The influence of
various emerging parameters such as Darcy number, Rayleigh
number, Hartmann number and nanofluid volume fraction on
heat transfer behavior were demonstrated. Recently, a num-
erical investigation on the conjugate natural convection in a
circular pipe comprising water (H2O) can be found in [12].
Significant contributions regarding wavy-shaped cavities has
been presented by numerous authors [13–16].

A mixture of nano-sized particles and a base fluid is
known as a nanofluid. Base fluid include water, ethylene
glycol, kerosene, engine oil and various other fluids which
have poor thermal conductivity. Choi [17] reported that the
suspension of nanoparticles inside the abovementioned fluids
can enhance the thermal conductivity of the base fluid. Later,
his idea was proved by various researchers both experimen-
tally and theoretically. Many comprehensive and qualitative
theoretical studies related to the nanofluid domain are avail-
able in the literature, but we only include very recent literature
in our study. Mohyud-Din et al [18] examined the flow of
carbon–water nanofluid beside the influence of thermal
radiation and Marangoni convection. They reported a least
square investigation of the governing flow problem. Usman
et al [19] analyzed the transportation of heat and fluid flow of
water and ethylene glycol-based Cu nanoparticles between
two parallel squeezing porous disks. They simulated the
problem by means of the least square Galerikin technique.
The flow of CuO–H2O (copper–water) nanofluid and heat
transfer enhancement with a melting surface was simulated by
Sheikholeslami and Sadoughi [20]. The transport of heat of
water-based Cu and Ag (silver) nanoparticles along a con-
verging/diverging channel by means of the least square
approach was analyzed by Usman et al [21]. Sheikholeslami
and Shehzad [22] numerically analyzed the flow of an
Fe3O4–H2O nanofluid in permeable media under the influence
of an external magnetic source. A detailed analysis was
proposed by Usman et al [23] for heat and fluid flow of
ferrofluids due to constant heat flux along a plate. Recently,
Hamid et al [24] described the influence of MoS2 nano-
particles along with the shape factor for nanofluid flow
through a moving surface. The Galerkin approach was
introduced to handle the mentioned model.

Natural convection phenomena and their mathematical
modeling in the form of differential equations are based upon
nonlinear terms. Many algorithms have been developed or
extended to tackle the complex nature nonlinear physical
and mathematical problems. Previously, various numerical,
[25, 26], analytical [27–29] and wavelet-based techniques
[30, 31] have been adopted to analyze the solutions of the
abovementioned problems. A careful literature survey wit-
nesses that advantages and disadvantages of said algorithms
are found. The main purpose of the research community is to
remove such disadvantages. A numerical algorithm FEM is
comparatively better tool to tackle the nonlinear problem in
engineering and mathematical physics. Fluid flow, mass
transport, structural analysis, electromagnetic potential and
heat transfer are the typical problems which could be tackled
via the FEM. The solutions of these problems analytically are
referred to as boundary value problems for partial differential
equations. The system of algebraic equations can be obtained
by means of FEM formulation. The referred algorithm is used
extensively to find the solution to cavity and complex natural
flow problems [1–3, 32, 34, 35].

In the present study, we examined the impact of CuO
nanoparticles incorporated with a base fluid inside a corru-
gated cavity. A rod is placed inside the cavity. The vertical
walls are cold, the top surface kept adiabatic and the bottom
surface kept partially heated. We used the KKL model [2] for
viscosity and effective thermal conductivity. The finite ele-
ment method (FEM) [1] is proposed and applied effectively to
investigate the above model numerically. Streamlines, iso-
therms and Nusselt numbers are generated to show the fluid
flow, temperature and heat transfer varying numerous
parameters.

2. Mathematical formulation

Consider the steady, incompressible and laminar flow in a
two-dimensional CuO–water nanofluid enclosed in a cavity
having a rectangular shape with smooth vertical lines while
the bottom and top boundaries are corrugated. A rod is placed
inside the cavity as shown in figure 1.

In addition, the vertical walls are cold, the top surface
kept adiabatic and the bottom surface kept partially heated.
Let U and V represent the velocity components in x- and y-
directions, respectively. Taking into account the above
assumptions and after applying the Boussinesq approx-
imation, we get the following mathematical model [2]:
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associated with the following boundary conditions:

and = =u v 0 at all walls. In the above equations, the
velocity component of the x- and y-directions are represented
by u and v. Wavelength number, amplitude, temperature of
the fluid, pressure, cold side and partially heated domain are
denoted by n a T p, , , ,* Tc and AB ,∣ ∣ respectively. Moreover,
n r b k, , ,nf nf nf nf and rcp nf( ) represent the dynamic viscos-
ity, density, coefficient of thermal expansion, thermal
conductivity and heat capacity of the nanofluid, respectively,
and defined as [2]:
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Here, we used a new expression for the thermal conductivity
defined in [2]:
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ship function x. This new relation is given as follows:
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Figure 1. Geometry of the model.
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where the Boltzmann constant kB is defined as k =B
´ - -1.38 10 J K23 1 and = +T T T0.5 .h c0 ( ) The additional

function x is given as:
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In the above, the coefficients a = ¼i 1 10i ( ) are given in
table 2. The numerical values of the thermophysical properties
of the nanofluid are defined in table 1. Also, the effective
viscosity due to the effects of Brownian motion is given as [33]:
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In the above, dimensionless parameter Ra is the Rayleigh
number and Pr is the Prandtl number for the base fluid. By
means of the above similarity variables system of
equations (1)–(4) takes the following form:
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The boundary conditions reduce to:

and = =U V 0 at all walls. Here l = L a/ represents the
amplitude ratio, A A A A, , ,1 2 3 4 and A5 are introduced just
for simplicity. The local Nusselt number is given as:
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Table 1. Thermophysical properties of water and CuO nanoparticles.

Properties  r -kg m 3( ) -C J kg Kp
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3. Solution procedure

The nondimensional forms of dimensionless equations (10)–(12)
are highly nonlinear, that is why it is hard to attain the analytical
solution. Therefore, the solutions of equations (10)–(12) are
analyzed numerically via the Galerkin FEM. To attain the
numerical solutions of equations (10)–(12), we ratify penalty
the FEM in which pressure term P eliminated by defining the
penalty parameter g, with continuity criteria present in
equation (9), therefore we have:
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The penalty finite element approach is widely used and a
typical approach for the numerical solutions of viscous incom-
pressible fluid. For large values of g (e.g. 107) continuity
equation (9) is automatically satisfied. Therefore, by means of
equation (15), dimensionless momentum equations (10)–(11) are
reduced as:
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Figure 2. Mesh generation at various corners of the cavity.
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In the FEM, we divide the area into a finite number of
triangular elements having three nodes. In every element Ui

the approximate solution for U in variational formulation is
stated as a linear combination of shape function. f =x y k, ,k ( )
1, 2, 3 is a linear polynomial. This approximate solution of U
concurs with real values at every node of the element. Varia-
tional formulation reduces to a matrix equation having order 3
by 3 (stiffness matrix) for unknown local nodal values. Mesh
generation at various corners of the cavity is described in
figure 2. By means of boundary conditions and inter-element
continuity, stiffness matrices are assembled concerning global
nodal yields a global matrix equation. For equations (10)–(12),
the FEM suggests the following solutions:
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According to the Galerkin FEM, we get the following
nonlinear residuals equations for U V, and q by inserting the
above solutions in (12, 16–17) and applying the weak for-
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Figure 3. Mesh sensitivity analysis when f= =Ra 10 , 0.24

and =n 11.

Table 2. The coefficient values of nanofluids.

Coefficients ai CuO–water Coefficients ai CuO–water

=i 1 -26.5933108 =i 6 48.40336955
=i 2 -0.403818333 =i 7 -9.787756683
=i 3 -33.3516805 =i 8 190.24561009
=i 4 -1.915825591 =i 9 10.9285386565
=i 5 -0.006421858 =i 10 -0.72009983664
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To appraise the integrals of the above residual equations,
we use bi-quadratic basis functions along with the three-point
Gaussian quadrature, whereas the two-point Gaussian quad-
rature is used for the term containing penalty terms in
equations (19)–(20). The above system reduces to the fol-
lowing matrices form as:

cg+ =A B C,[ ]

where, matrices A and B are achieved from the Jacobian of
residuals defined in equations (19) and (21). The unknown vector
is defined by c. Due to the large value of g , the contribution of
Bg is relatively high compared to A. This implies that the cur-
rent model only endures with continuity equation (9) [35, 36].
The Newton Raphson procedure is adopted to solve the nonlinear
residual equations (19)–(21) for the unknowns present in the
expressions (18). We obtain the 3N by 3N system in each
iteration of the Newton Raphson procedure

c c c c- =+ n n n n1( )[ ] ( )

is solved. Here cJ n( ) is the Jacobian matrix [36] and cR n( ) is
the residuals vector. This iterative procedure is stopped by the
given convergence level. Motion of fluid is displayed by means
of the stream functions y attained for the velocity componentsU
and V and the relation between them is given as [36]:

y y
=

¶
¶

= -
¶
¶

U
Y

V
X

, ,

which return the following expression:

y y¶
¶

-
¶
¶

=
¶
¶

+
¶
¶
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X X Y
. 22

2

2

2

2
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Now considering the trial solution for stream function y by
means of the basis f =i i

N
1{ } which is given as:

åy y f=
=

X Y, .
i

N

i
1

( )

Now, by means of the Galerkin FEM, we obtain the fol-
lowing residual equation for equation (22):
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At the boundaries of the nodes, the residual equation (23)
stratified y = 0. Integral of equation (23) evaluated by means of
bi-quadratic basis function, consequently unknownsy’s achieved
by solving N linear residual equation (23). The local Nusselt
number, tangent to curve pXsin 11 20,( )/ along the partially
heated corrugated length at pXsin 11 20( )/ and the heated fin/
obstacle =Y 0.255 are defined as:

Tangent to the curve p=Y Xsin 11 20:( )/
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= -
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Figure 4. Variation of isotherm behavior in the comparison with (a) experimental work by Paroncini and Corvaro [39] and (b) present work
when = = ´RaPr 6.2, 1.24 10 .5
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Along the heated fin/obstacle at =Y 0.255:

ò
q

= -
¶
¶

=Nuss
Y

Xd . 26Y 0.255
0.3

0.7
⎜ ⎟⎛
⎝

⎞
⎠∣ ( )

After defining the entire procedure, we have validated our
results (see table 3) with the existing literature published by
Khanafer et al [37] and Davis [38]. It can be seen that our results
provide accurate and stable results up to four decimal places.

Figure 3 demonstrated the mesh-sensitive analysis of the
current model. We have considered nonuniform mesh unless
convergence is not achieved for maximum values of stream
function. One can observe in figure 3 that we have run the code
10 times unless the repeated results of maximum values of the
stream function is attained. In order to verify the current model
with the limiting case of the experimental results by Paroncini
and Corvaro [39], an excellent comparison is attained in figure 4
for isotherm variation when = = ´RaPr 6.2, 1.24 10 .5

Figure 5. Variation of (a) temperature along the y-direction, (b) velocity V along the y-direction, (c) velocity U along the x-direction, and
(d) Nusselt number at =Y 0.05 for various values of wavelengths number ‘n’ when =Ra 105 and f = 0.2.
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4. Results and discussion

In the previous section numerical solutions of heat transfer of
CuO–water filled in a corrugated duct with inside a adiabatic
rod achieved by means of the Galerkin FEM. This section is
devoted to a comprehensive discussion about the effects of

different values of Rayleigh number  Ra10 10 ,4 7( )
wavelength  n0 15 ,( ) bottom heated portion 0.18(

L 1 ,T ) heated conditions at rod (cold, adiabatic and hot)
and nanoparticle volume fraction f 0 0.2 ,( ) on streams
lines, isotherms, velocities (U and V ) and temperature (T).
The Nusselt number measures the rate of heat transfer, that is

Figure 6. Variation of (a)–(d) isotherms and (e)–(h) stream function for various values of wavelengths number ‘n’ when =Ra 105

and f = 0.2.
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why behavior of the nondimensional Nusselt number due to
the variation of various parameters is also considered. Num-
erical values of thermophysical properties are defined in
tables 1 and 2.

Figures 5 and 6 are plotted to analyze the behavior of
isotherms and streamlines due to the variation in wavelength
parameter. Effects of wavelength parameter on temperature
along the y-direction, velocity (V ) along the y-direction,
velocity (U) along x-direction and Nusselt number.
Figure 5(a) represents that temperature enhances and
increasing the value of wavelength parameter. It can be seen
from figures 5(b), (c) that the velocity (V ) along the

y-direction increases as the wavelength parameter varies. It is
observed that the velocity profile is dominant when the
boundary is not corrugated (n=0). Velocity (U) along the
x-direction demonstrates the increasing and decreasing
behavior when Îx 0, 0.3[ ) and Îx 0.7, 1( ] of the cavity. As
the wavelength increases, the behavior of velocity U increases
in the left portion of the cavity and decreases in the right
portion. The effects of wavelength parameter on heat transfer
rate are portrayed figure 5(d). This figure shows that heat
transfer increases as the wavelength parameter increases.
Moreover, it is observed that at vertical walls of the cavity,
the heat transfer rate is maximum. Physically, this is expected

Figure 7. Variation of (a) Nusselt number at =Y sin ,X11
20( ) (b) Nusselt number at =Y 0.255 at inner heated rod, (c) temperature along the

y-direction, (d) velocity V along the y-direction for various values of Ra when =n 11 and f = 0.2.
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since the vertical walls are set to be cold. Figures 6(a)–(d)
show the heat distribution against the variation in wavelength
parameter. As it is enhanced, the value of wavelength para-
meter heat is distributed more to nearby areas. This
phenomenon is well supported in figure 5(a). Due to the cold
vertical wall, temperature distribution begins to grow from
the center of the cavity in the direction of upper wall.
Figures 5(e)–(h) disclose the impact of wavelength parameter
on fluid flow. Fluid flow becomes stronger as upsurges the
value of wavelength parameter occur. Further, it is observed

that as wavelength parameter increases, the streamlines reach
the full cavity.

The effect of Rayleigh number on isotherms, streamlines,
Nusselt number, temperature along y-direction and velocity
(V ) along y-direction is portrayed in figures 7 and 8 at pre-
scribed paths. Figures 7(a), (b) shows that as the Rayleigh
number increases, the heat transfer rate upsurges gradually. It
is seen that at vertical walls of the cavity, the heat transfer rate
is maximum because the vertical walls are cold. Figure 7(c)
demonstrates the effect of Rayleigh number on temperature

Figure 8. Variation of (a)–(c) isotherms and (d)–(f) stream function with respect to various values of Ra when =n 11 and f = 0.2.
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distribution. Temperature distribution decreases along the
vertical mean path and increases Rayleigh number. As Ray-
leigh number increases velocity (V ) along the y-direction due
to the variation in Rayleigh number can be seen in figure 7(d).
Overall behavior of velocity is increasing as upsurges Ray-
leigh number expect lower half section of the cavity.
Figures 8(a)–(c) reveal the behavior of isotherms for different
values of Rayleigh number. Clearly, it is observed that
increase in Rayleigh number tends to increase in temperature
distribution in the cavity. Again, as the results of cold vertical
walls temperature distribution begins to grow from the center
of the cavity in the direction of upper wall. Impact of fluid
flow under the variation of Rayleigh number characterized in
figures 8(d)–(f). This figure evident that as growing the values
of Rayleigh number, fluid flow become stronger.

The nature of isotherms and streamlines, temperature
along y-direction, velocity (V ) along y-direction and velocity
(U) along x-direction by rising the value of nanoparticles
volume fraction is depicted in figures 9–10 along defined
paths. Change in velocity (U) along the x-direction by
increasing the value of nanoparticles volume fraction dis-
played in figure 9(a). It can be observed that as enlarges
nanoparticles volume fraction velocity decreases near the wall

of cavity between (0, 0.245) to (0.3, 0.245) and increases near
the wall of cavity between (0.7, 0.245) to (1, 0.245).
Figure 9(c) illustrate the variation in velocity (V ) along y-
direction under the influence of nanoparticles volume frac-
tion. As enhancing nanoparticles volume fraction velocity
profile increase between (0.5, −0.05) to (0.5, 0.24) and (0.5,
0.25) to (0.5, 0.45). Figure 9(c) exhibit the nature of temp-
erature distribution. Clearly, temperature distribution exhibits
the decreasing and increasing behavior between (0.5, −0.05)
to (0.5, 0.24) and (0.5, 0.25) to (0.5, 0.45) respectively.
Figures 10(a)–(c) display the impact of nanoparticles volume
fraction on temperature distribution. Temperature distribution
increases as nanoparticles volume fraction increases. Physi-
cally this is correct, since temperature increases as the thermal

Figure 9. Variation of (a) temperature along the y-direction, (b) velocity V along the y-direction, (c) velocity U along the x-direction for
various values of f when =Ra 105 and =n 11.

Table 3. Comparison between present results and other works for the
average Nusselt number (Nuavg).

Ra Present work Khanafer et al [37] De Vahl Davis [38]

103 1.1307 1.118 1.118
104 2.2674 2.245 2.243
105 4.5851 4.522 4.519
106 8.8341 8.826 8.799
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conductivity property of nanoparticles rises. On the other
hand, the streamline behavior for different values of nano-
particle volume fraction is verified in figures 10(d)–(f). This
figure shows that by increasing the nanoparticles volume
fraction the strength of the molecules is increased, and friction
is produced among the particles that effect the stream
function.

Figure 11 analyzes the nature of streamlines and iso-
therms as changing the length of the heated portion ‘LT ’.
Figures 11(a)–(c) confirm the behavior of temperature dis-
tribution under the influence of L .T It is evident that as it
increases the heated portion temperature distribution increases

in the cavity. On the other hand, figures 11(d)–(f) interpret the
nature of trajectories of fluid motion. It is observed that LT

rises, the trajectories of fluid motion become stronger.
Effects of Rayleigh number on isotherms and streamlines

when the inner rod is cold is shown in figure 12. In
figures 12(a)–(c) the behavior of temperature distribution
under the inspiration of the Rayleigh number is depicted.
Temperature of the fluid increases in the cavity the Rayleigh
number is enhanced. Figures 12(d)–(f) depict the nature of the
fluid trajectories with respect to Rayleigh number. It is
noticed that the Rayleigh number increases, the trajectories of
the fluid motion become stronger.

Figure 10. Variation of (a)–(c) isotherms and (d)–(f) stream function for various values of f when =Ra 105 and =n 11.

13

Commun. Theor. Phys. 72 (2020) 085003 R U Haq et al



5. Conclusion

In this paper, we considered the heat transfer of CuO–water
inside a corrugated cavity having bottom wall that is
partially heated with an adiabatic rod. Convenient similarity
variables are introduced to obtain the nondimensionalized
form of the modeled problem. The finite element method
is adopted for the numerical solutions of the nondimensionalized
system of partial differential equations. Major findings are stated
below:

• Temperature distribution, streamlines and heat transfer
rate are significantly increased when the wavelength
parameter increases.

• By increasing the Rayleigh number, the temperature
distribution and streamlines increase gradually.

• An increase in nanoparticle volume fraction causes
increments in temperature distribution and trajectories
of fluid flow.

• The corrugated surface demonstrates the significant heat
transfer within the entire domain of the cavity.

Figure 11. Variation of (a)–(c) isotherms and (d)–(f) stream function for various heated lengths when f = =Ra0.2, 105 and =n 11.
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• Isotherms and streamlines become stronger as we
increase the length of the heated portion of the cavity.
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